# Chaotic Particle Trajectories in High-Intensity Finite-Length Charge Bunches

Stuart R. Hudson, Hong Qin and Ronald C. Davidson

Princeton Plasma Physics Laboratory, PO Box 451, Princeton NJ 08543.

#### **Abstract**

A Vlasov-Maxwell equilibrium for a charged particle bunch is given in the beam frame by the distribution function that is a function of the single-particle Hamiltonian f = f(H), where in an axisymmetric cylinder  $H = p^2/2m + \kappa_{\perp} r^2/2 + \kappa_z z^2/2 + q\phi(r,z)$ , the kinetic energy is  $p^2/2m$ ,  $\kappa_{\perp}$  and  $\kappa_z$  are the external focusing coefficients in the transverse and longitudinal directions, and  $\phi$  is the electrostatic potential determined selfconsistently from Poisson's equation  $\nabla^2 \phi = -4\pi q \int d^3p f(H)$ . The selffield potential  $\phi$  introduces a coupling between the otherwise independent r and z motions. Under quite general conditions, this leads to chaotic particle motion. Poisson's equation is solved using a spectral method in zand a finite-difference method in r, and a Picard iteration method is used to determine  $\phi$  self-consistently. For the thermal equilibrium distribution  $f = A \exp(-H/T)$ , the single-particle trajectories display chaotic behavior. The properties of the chaotic trajectories are characterized.

## Thermal Equilibrium

- External focusing potential  $V_{ext}=\kappa_{\perp}r^2/2+\kappa_zz^2/2$ ,  $\kappa_{\perp}$  and  $\kappa_z$  are the external focusing coefficients.
- Hamiltonian

$$\mathcal{H} = \frac{p_r^2}{2m} + \frac{p_\theta^2}{2mr^2} + \frac{p_z^2}{2m} + \frac{\kappa_\perp r^2}{2} + \frac{\kappa_z z^2}{2} + q\phi, \tag{1}$$

where  $p_r = m\dot{r}$ ,  $p_\theta = mr^2\dot{\theta}$  and  $p_z = m\dot{z}$ .

Distribution function

thermal equilibrium 
$$f(H) = \frac{n_0}{(2\pi mT)^{3/2}} \exp(-\mathcal{H}/T).$$
 (2)

Poisson's equation

$$\nabla^2 \phi = -4\pi q n,\tag{3}$$

with number density  $n = n_0 \exp(\kappa_{\perp} r^2/2 + \kappa_z z^2/2 + q\phi)$ .

#### Normalization

• normalized lengths  $r_b=\sqrt{T/\kappa_\perp}$ ,  $\bar r=r/r_b$  and  $\bar z=z/r_b$ , normalized potential,  $\bar\phi=q\phi/T$ ,

$$\overline{\nabla}^2 \bar{\phi} = -2s_b \exp\left(-\overline{r}^2/2 - \eta \overline{z}^2/2 - \bar{\phi}\right),\tag{4}$$

dimensionless parameters

$$\eta = \kappa_z/\kappa_\perp$$

$$s_b = (4\pi q^2 \, n_0/m)/2\omega_\perp^2$$

• Normalized Hamiltonian :  $\bar{\mathcal{H}} = \mathcal{H}/T$ ,

$$\bar{\mathcal{H}} = \frac{\bar{p}_r^2}{2} + \frac{\bar{p}_\theta^2}{2\bar{r}^2} + \frac{\bar{p}_z^2}{2} + \frac{\bar{r}^2}{2} + \eta \frac{\bar{z}^2}{2} + \bar{\phi}, \qquad (5)$$

$$\bar{p}_r = \bar{r}', \ \bar{p}_\theta = \bar{r}^2 \theta', \ \bar{p}_z = \bar{z}', \ \text{and} \ \prime = d/d\bar{t} \ \text{where} \ \bar{t} = t \, \omega_\perp$$

 Hereafter, we will use the normalized equations: the 'bars' will be dropped and the 'dot' will denote the derivative with respect to the normalized time.

#### **Picard Solution**

A mixed finite-difference, spectral method is used

$$\phi(r,z) = \sum \phi_n(r) \cos(nkz), \tag{6}$$

 $\phi_n(r)$  interpolates  $\phi_{n,i}$  given on a radial grid.

- Laplacian operator :  $\nabla^2 = \partial_r^2 + r^{-1}\partial_r + \partial_z^2$ .
- The radial derivatives are approximated by the first order expressions.  $\nabla^2$  becomes a tri-diagonal matrix for each harmonic.
- This allows a Picard iterative solution for the potential

given n, solve for  $\phi$ 

given  $\phi$ , solve for  $\phi$ 

• He we use  $N_r = 100, N_z = 50, R_w = 20$  and  $L_z = 20$ .

## **Phase Space**

- For each selection of the dimensionless parameters  $(\eta, s_b)$ , a point in phase space is described by  $(r, \theta, z, p_r, p_\theta, p_z)$ .
- The azimuthal angle  $\theta$  is ignorable, thus the angular momentum  $p_{\theta}$  is a constant of the motion. Each particle's trajectory will lie on a constant energy surface.
- A phase space subset in then specified by  $(p_{\theta}, H)$ , and a point in this space is given by  $(r, z, p_r)$ .
- Note that given  $(p_{\theta}, H)$  and  $(r, z, p_r)$ ,  $p_z$  is then constrained by Eq.(5).
- Poincaré section : z = 0 with  $p_z > 0$ .

#### **Chaos and Periodic Orbits**

- Regular and chaotic trajectories are interspersed in phase space.
- Regular motion lies on invariant surfaces where the frequency ratio is irrational.
- ullet Resonance zones, or islands, will emerge where the frequency ratio between the r and z motions is rational.
- Associated with each island chain, are the stable and unstable orbits, which appear as O and X points on the Poincaré plot.
- Chaotic trajectories arise near the unstable X point.
- If the islands are so large that they overlap with nearby islands, then regions of extended chaos will be produced.

## Zero self-field: Action-angle coordinates

- ullet For the case that the self-field potential is zero, the r and z motions are independent and the dynamics is integrable.
- The 'action' coordinates are

$$j_r = (\alpha - p_\theta)/2 \qquad \theta_r = \cos^{-1}[(r^2 - \alpha)/\beta] \qquad (7)$$

$$j_z = (z^2 \eta^{\frac{1}{2}} + p_z^2 / \eta^{\frac{1}{2}})/2$$
  $\theta_z = \tan^{-1}(\eta^{\frac{1}{2}} z / p_z),$  (8)

where  $\alpha = p_r^2/2 + p_\theta^2/2r^2 + r^2/2$ ,  $\beta = \sqrt{\alpha^2 - p_\theta^2}$ .

- $H = 2j_r + p_\theta + \eta^{\frac{1}{2}}j_z$ .
- $\bullet \ \omega_r/\omega_z = 2/\eta^{\frac{1}{2}}$
- resonance will exist when  $2/\eta^{\frac{1}{2}} = p/q$ , where p,q are integers.

# Small self-field: Perturbation Analysis

Hamiltonian

$$H = 2j_r + p_\theta + \eta^{\frac{1}{2}}j_z + \varphi,$$
 where  $\varphi(\theta_r, \theta_z, j_r, j_z) = \phi(r(\theta_r, j_r), z(\theta_z, j_z)).$  (9)

- Writing  $H=h_0+\epsilon h_1$  where  $h_0=2j_r+p_\theta+\eta^{\frac{1}{2}}j_z$  and  $h_1=\varphi$ , actionangle coordinates (equivalently, invariants of the motion) for the perturbed motion through second order in  $\epsilon$  can be constructed and compared to the exact trajectories.
- For sufficiently small self-field potential, the agreement is generally good.



Poincaré section with invariant surfaces constructed from second-order perturbation theory  $(\eta, s_b) = (0.3, 0.1)$ ,  $(p_{\theta}, H) = (1.0, H = 5.0)$ .

## **Equations of Motion**

• With the selection of the plane z=0 as the Poincaré section, it is convenient to consider the independent integration parameter to be  $\theta_z$ , rather than the time.

The equations to be integrated then become

$$\theta_r' = \dot{\theta}_r / \dot{\theta}_z, \tag{10}$$

$$j_r' = d_t j_r / \dot{\theta}_z, \tag{11}$$

$$j_z' = d_t j_z / \dot{\theta}_z. \tag{12}$$

where the  $\prime$  denotes the derivative with respect to  $\theta_z$ ,  $\dot{\theta}_r = 2 + \partial \varphi / \partial j_r$ ,  $\dot{\theta}_z = \eta^{\frac{1}{2}} + \partial \varphi / \partial j_z$ ,  $d_t j_r = -\partial \varphi / \partial \theta_r$ , and  $d_t j_z = -\partial \varphi / \partial \theta_z$ .

• The mapping from the Poincaré section to itself, the Poincaré map, is now obtained by integrating these equations from  $\theta_z = 0$  to  $\theta_z = 2\pi$ .

## Lyapunov exponent

- A defining feature of chaos is that particle trajectories have an extreme sensitivity to the initial conditions.
- Particle trajectory : initial conditions  $x(0) = (\theta_r(0), j_r(0), j_z(0))$  (where, given H,  $j_z$  is constrained)
- Nearby trajectory  $x(0) + \delta x(0)$ , where  $\delta j_z$  is constrained to lie in the constant-energy tangent space

$$\delta j_z = -(\partial_{\theta_r} \varphi \delta \theta_r + (2 + \partial_{j_r} \varphi) \delta j_r) / (\eta^{\frac{1}{2}} + \partial_{j_z} \varphi). \tag{13}$$

ullet The trajectories will evolve under Eq.(10-12), and the rate at which the separation  $\delta x(\theta_z)$  evolves is characterized by the Lyapunov exponent  $\sigma$ 

$$\sigma(x, \delta x) = \lim_{|\delta x(0)| \to 0} \lim_{\theta_z \to \infty} \frac{1}{\theta_z} \ln \frac{|\delta x(\theta_z)|}{|\delta x(0)|}.$$
 (14)

# **Linearized Equations**

• The limit  $|\delta x(0)| \to 0$  is most conveniently treated by linearizing Eqs.(10-12) to obtain  $d\delta x/d\theta_z = T\delta x$ , where T is the tangent map

$$\mathbf{T} = \begin{pmatrix} \frac{\partial \theta_r'}{\partial \theta_r}, & \frac{\partial \theta_r'}{\partial j_r}, & \frac{\partial \theta_r'}{\partial j_z} \\ \frac{\partial j_r'}{\partial \theta_r}, & \frac{\partial j_r'}{\partial j_r}, & \frac{\partial j_r'}{\partial j_z} \\ \frac{\partial j_z'}{\partial \theta_r}, & \frac{\partial j_z'}{\partial j_r}, & \frac{\partial j_z'}{\partial j_z} \end{pmatrix}.$$
(15)

- ullet The component of  $\delta x$  along the most unstable direction will grow most rapidly and dominate the computation. For an arbitrary initial  $\delta x$ , the largest exponent will be calculated.
- After linearizing the equations, all that remains is to follow the trajectory, while evolving the tangent vector, to determine the quantity  $\ln |\delta x|/\theta_z$  as  $\theta_z \to \infty$  where  $|\delta x(0)| = 1$ . Typically, a trajectory must be followed hundreds of oscillations for this limit to converge.

# Periodic Orbits: Lyapunov exponent

- Periodic orbit :  $\theta_r(2\pi q) = \theta_r(0) + 2\pi p$  and  $j_r(2\pi q) = j_r(0)$ .
- ullet Full-period tangent map, M, at the periodic orbit is obtained

$$\frac{dM}{d\theta_z} = TM$$
, with initial condition  $M = I$ . (16)

By incorporating Eq.(13), M reduces to a 2  $\times$  2 matrix.

• If the eigenvalues are real, the orbit is unstable,

Lyapunov exponent of periodic orbit  $\sigma_{pq} = \ln \lambda/2\pi q$ , (17) where  $\lambda$  is the maximum eigenvalue.

• Symmetry: periodic orbits lie on the symmetry lines  $\theta_z = 0, \pi$ . The search for periodic orbits becomes a one-dimensional search in  $j_r$ .



#### **Characterization of Chaos**

- The eigenvalues of the full period tangent map are related to a quantity called the residue introduced by Greene.
- The limiting residue of an appropriate sequence of periodic orbits may be used to determine the existence, or non-existence, of an irrational (KAM) surface.
- Also, the tangent map at the periodic orbits can also be used to estimate island widths.
- This suggests that an numerically efficient method to quantify the degree of chaos would be to locate several periodic orbits (usually those with the lowest values of q are most important, and conveniently these are of the shortest length), estimate the widths of the islands associated with these periodic orbits and apply a Chirikov style island overlap criterion.